語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
查詢
薦購
讀者園地
我的帳戶
說明
簡單查詢
進階查詢
圖書館推薦圖書
讀者推薦圖書(公開)
教師指定參考書
借閱排行榜
預約排行榜
分類瀏覽
展示書
專題書單RSS
個人資料
個人檢索策略
個人薦購
借閱紀錄/續借/預約
個人評論
個人書籤
東區互惠借書
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Robust representation for data analy...
~
Li, Sheng.
FindBook
Google Book
Amazon
博客來
Robust representation for data analytics = models and applications /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Robust representation for data analytics/ by Sheng Li, Yun Fu.
其他題名:
models and applications /
作者:
Li, Sheng.
其他作者:
Fu, Yun.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
xi, 224 p. :ill., digital ;24 cm.
內容註:
Introduction -- Fundamentals of Robust Representations -- Part 1: Robust Representation Models -- Robust Graph Construction -- Robust Subspace Learning -- Robust Multi-View Subspace Learning -- Part 11: Applications -- Robust Representations for Collaborative Filtering -- Robust Representations for Response Prediction -- Robust Representations for Outlier Detection -- Robust Representations for Person Re-Identification -- Robust Representations for Community Detection -- Index.
Contained By:
Springer eBooks
標題:
Knowledge representation (Information theory) -
電子資源:
http://dx.doi.org/10.1007/978-3-319-60176-2
ISBN:
9783319601762
Robust representation for data analytics = models and applications /
Li, Sheng.
Robust representation for data analytics
models and applications /[electronic resource] :by Sheng Li, Yun Fu. - Cham :Springer International Publishing :2017. - xi, 224 p. :ill., digital ;24 cm. - Advanced information and knowledge processing,1610-3947. - Advanced information and knowledge processing..
Introduction -- Fundamentals of Robust Representations -- Part 1: Robust Representation Models -- Robust Graph Construction -- Robust Subspace Learning -- Robust Multi-View Subspace Learning -- Part 11: Applications -- Robust Representations for Collaborative Filtering -- Robust Representations for Response Prediction -- Robust Representations for Outlier Detection -- Robust Representations for Person Re-Identification -- Robust Representations for Community Detection -- Index.
This book introduces the concepts and models of robust representation learning, and provides a set of solutions to deal with real-world data analytics tasks, such as clustering, classification, time series modeling, outlier detection, collaborative filtering, community detection, etc. Three types of robust feature representations are developed, which extend the understanding of graph, subspace, and dictionary. Leveraging the theory of low-rank and sparse modeling, the authors develop robust feature representations under various learning paradigms, including unsupervised learning, supervised learning, semi-supervised learning, multi-view learning, transfer learning, and deep learning. Robust Representations for Data Analytics covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.
ISBN: 9783319601762
Standard No.: 10.1007/978-3-319-60176-2doiSubjects--Topical Terms:
539449
Knowledge representation (Information theory)
LC Class. No.: Q387
Dewey Class. No.: 006.332
Robust representation for data analytics = models and applications /
LDR
:02424nmm a2200337 a 4500
001
2106087
003
DE-He213
005
20180313133248.0
006
m d
007
cr nn 008maaau
008
180417s2017 gw s 0 eng d
020
$a
9783319601762
$q
(electronic bk.)
020
$a
9783319601755
$q
(paper)
024
7
$a
10.1007/978-3-319-60176-2
$2
doi
035
$a
978-3-319-60176-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q387
072
7
$a
UNF
$2
bicssc
072
7
$a
UYQE
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
082
0 4
$a
006.332
$2
23
090
$a
Q387
$b
.L693 2017
100
1
$a
Li, Sheng.
$3
1035681
245
1 0
$a
Robust representation for data analytics
$h
[electronic resource] :
$b
models and applications /
$c
by Sheng Li, Yun Fu.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xi, 224 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Advanced information and knowledge processing,
$x
1610-3947
505
0
$a
Introduction -- Fundamentals of Robust Representations -- Part 1: Robust Representation Models -- Robust Graph Construction -- Robust Subspace Learning -- Robust Multi-View Subspace Learning -- Part 11: Applications -- Robust Representations for Collaborative Filtering -- Robust Representations for Response Prediction -- Robust Representations for Outlier Detection -- Robust Representations for Person Re-Identification -- Robust Representations for Community Detection -- Index.
520
$a
This book introduces the concepts and models of robust representation learning, and provides a set of solutions to deal with real-world data analytics tasks, such as clustering, classification, time series modeling, outlier detection, collaborative filtering, community detection, etc. Three types of robust feature representations are developed, which extend the understanding of graph, subspace, and dictionary. Leveraging the theory of low-rank and sparse modeling, the authors develop robust feature representations under various learning paradigms, including unsupervised learning, supervised learning, semi-supervised learning, multi-view learning, transfer learning, and deep learning. Robust Representations for Data Analytics covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.
650
0
$a
Knowledge representation (Information theory)
$3
539449
650
0
$a
Big data.
$3
2045508
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
650
2 4
$a
Pattern Recognition.
$3
891045
650
2 4
$a
Image Processing and Computer Vision.
$3
891070
700
1
$a
Fu, Yun.
$3
2059227
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Advanced information and knowledge processing.
$3
1568369
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-60176-2
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9322619
電子資源
11.線上閱覽_V
電子書
EB Q387
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入
(1)帳號:一般為「身分證號」;外籍生或交換生則為「學號」。 (2)密碼:預設為帳號末四碼。
帳號
.
密碼
.
請在此電腦上記得個人資料
取消
忘記密碼? (請注意!您必須已在系統登記E-mail信箱方能使用。)