Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Random walks on reductive groups
~
Benoist, Yves.
Linked to FindBook
Google Book
Amazon
博客來
Random walks on reductive groups
Record Type:
Electronic resources : Monograph/item
Title/Author:
Random walks on reductive groups/ by Yves Benoist, Jean-Francois Quint.
Author:
Benoist, Yves.
other author:
Quint, Jean-Francois.
Published:
Cham :Springer International Publishing : : 2016.,
Description:
xi, 323 p. :ill., digital ;24 cm.
[NT 15003449]:
Introduction -- Part I The Law of Large Numbers -- Stationary measures -- The Law of Large Numbers -- Linear random walks -- Finite index subsemigroups -- Part II Reductive groups -- Loxodromic elements -- The Jordan projection of semigroups -- Reductive groups and their representations -- Zariski dense subsemigroups -- Random walks on reductive groups -- Part III The Central Limit Theorem -- Transfer operators over contracting actions -- Limit laws for cocycles -- Limit laws for products of random matrices -- Regularity of the stationary measure -- Part IV The Local Limit Theorem -- The Spectrum of the complex transfer operator -- The Local limit theorem for cocycles -- The local limit theorem for products of random matrices -- Part V Appendix -- Convergence of sequences of random variables -- The essential spectrum of bounded operators -- Bibliographical comments.
Contained By:
Springer eBooks
Subject:
Random walks (Mathematics) -
Online resource:
http://link.springer.com/openurl.asp?genre=book&isbn=978-3-319-47721-3
ISBN:
9783319477213
Random walks on reductive groups
Benoist, Yves.
Random walks on reductive groups
[electronic resource] /by Yves Benoist, Jean-Francois Quint. - Cham :Springer International Publishing :2016. - xi, 323 p. :ill., digital ;24 cm. - Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A series of modern surveys in mathematics,v.620071-1136 ;. - Ergebnisse der Mathematik und ihrer Grenzgebiete ;v.62..
Introduction -- Part I The Law of Large Numbers -- Stationary measures -- The Law of Large Numbers -- Linear random walks -- Finite index subsemigroups -- Part II Reductive groups -- Loxodromic elements -- The Jordan projection of semigroups -- Reductive groups and their representations -- Zariski dense subsemigroups -- Random walks on reductive groups -- Part III The Central Limit Theorem -- Transfer operators over contracting actions -- Limit laws for cocycles -- Limit laws for products of random matrices -- Regularity of the stationary measure -- Part IV The Local Limit Theorem -- The Spectrum of the complex transfer operator -- The Local limit theorem for cocycles -- The local limit theorem for products of random matrices -- Part V Appendix -- Convergence of sequences of random variables -- The essential spectrum of bounded operators -- Bibliographical comments.
The classical theory of Random Walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple - or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.
ISBN: 9783319477213
Standard No.: 10.1007/978-3-319-47721-3doiSubjects--Topical Terms:
532102
Random walks (Mathematics)
LC Class. No.: QA274.73
Dewey Class. No.: 519.282
Random walks on reductive groups
LDR
:02795nmm a2200337 a 4500
001
2053793
003
DE-He213
005
20161020182122.0
006
m d
007
cr nn 008maaau
008
170510s2016 gw s 0 eng d
020
$a
9783319477213
$q
(electronic bk.)
020
$a
9783319477190
$q
(paper)
024
7
$a
10.1007/978-3-319-47721-3
$2
doi
035
$a
978-3-319-47721-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274.73
072
7
$a
PBT
$2
bicssc
072
7
$a
PBWL
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
082
0 4
$a
519.282
$2
23
090
$a
QA274.73
$b
.B473 2016
100
1
$a
Benoist, Yves.
$3
3166129
245
1 0
$a
Random walks on reductive groups
$h
[electronic resource] /
$c
by Yves Benoist, Jean-Francois Quint.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xi, 323 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A series of modern surveys in mathematics,
$x
0071-1136 ;
$v
v.62
505
0
$a
Introduction -- Part I The Law of Large Numbers -- Stationary measures -- The Law of Large Numbers -- Linear random walks -- Finite index subsemigroups -- Part II Reductive groups -- Loxodromic elements -- The Jordan projection of semigroups -- Reductive groups and their representations -- Zariski dense subsemigroups -- Random walks on reductive groups -- Part III The Central Limit Theorem -- Transfer operators over contracting actions -- Limit laws for cocycles -- Limit laws for products of random matrices -- Regularity of the stationary measure -- Part IV The Local Limit Theorem -- The Spectrum of the complex transfer operator -- The Local limit theorem for cocycles -- The local limit theorem for products of random matrices -- Part V Appendix -- Convergence of sequences of random variables -- The essential spectrum of bounded operators -- Bibliographical comments.
520
$a
The classical theory of Random Walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple - or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.
650
0
$a
Random walks (Mathematics)
$3
532102
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
891080
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
891276
650
2 4
$a
Topological Groups, Lie Groups.
$3
891005
700
1
$a
Quint, Jean-Francois.
$3
3166914
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Ergebnisse der Mathematik und ihrer Grenzgebiete ;
$v
v.62.
$3
3166915
856
4 0
$u
http://link.springer.com/openurl.asp?genre=book&isbn=978-3-319-47721-3
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9287096
電子資源
11.線上閱覽_V
電子書
EB QA274.73
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login